

Statistics content and changes in the new mathematics AS and A Level

Development timeline

AS and A Level Maths

- A choice of specifications...
 - Mathematics and Further Mathematics A, developed by OCR
 - Mathematics and Further Mathematics B (MEI), developed in collaboration with MEI.

Overview

- The grade-set will stay the same: A* E for A level and A E for AS level.
- There will be no coursework in either Mathematics or Further Mathematics.
- The AS content will be a subset of the A level content. AS and A level qualifications must be co-teachable, so that AS and A level Mathematics can be taught together in year 12 and Further Mathematics can be studied in parallel with Mathematics.

Four Big Changes (Maths)

- Moving to linear
- Large Data Set
- Technology
- Teaching Mechanics for the first time

AS and A Level Maths

OCR AS and A level Mathematics A

OCR AS and A level Mathematics B (MEI)

In the ideal hypothesis test, the following steps will be taken, in this order:

- 1. Establish the null and alternative hypotheses
- 2. Decide on the significance level
- 3. Collect suitable data using a random sampling procedure that ensures the items are independent
- 4. Conduct the test, doing the necessary calculations
- 5. Interpret the results in terms of the original claim, conjecture or problem

There are two types of hypothesis testing for the new qualifications

- Binomial (AS & A Level maths)
- Normal (A Level maths)

Hypothesis tests - H630/02 OCR B (MEI)

A company operates trains. The company claims that 92% of its trains arrive on time. You should assume 10 that in a random sample of trains, they arrive on time independently of each other. (i) Assuming that 92% of the company's trains arrive on time, find the probability that in a random sample of 30 trains operated by this company (A) exactly 28 trains arrive on time, [2] (B) more than 27 trains arrive on time. [2] A journalist believes that the percentage of trains operated by this company which arrive on time is lower than 92%. (ii) To investigate the journalist's belief a hypothesis test will be carried out at the 1% significance level. A random sample of 18 trains is selected. For this hypothesis test, state the hypotheses, find the critical region. 5

Hypothesis tests - H630/02 OCR B (MEI)

10 A company operates trains. The company claims that 92% of its trains arrive on time. You should assume that in a random sample of trains, they arrive on time independently of each other.

A journalist believes that the percentage of trains operated by this company which arrive on time is lower than 92%.

- (ii) To investigate the journalist's belief a hypothesis test will be carried out at the 1% significance level. A random sample of 18 trains is selected. For this hypothesis test,
 - · state the hypotheses,
 - find the critical region.

[5]

Let $p =$ probability that a train arrives on time	B1	2.5	For definition of p	
$H_0: p = 0.92$	B1	1.1	For H ₀ and H ₁	
H ₁ : $p < 0.92$				
Let $X \sim B(18, 0.92)$				
$P(X \le 13) = 0.0116 [> 1\%]$	MI	1.1	For probability $P(X \le any whole number value 1 to 18)$,	Allow FT from H ₁ : <i>p</i> < 0.92 OR H ₁ : <i>p</i> ≠ 0.92
$P(X \le 12) = 0.0021 [< 1\%]$	MI	1.1	Both $P(X \le 13)$ and $P(X \le 12)$	
The critical region is $X \le 12$	A1	2.2a	For correct critical region stated	
· · · · · · · · · · · · · · · · · · ·	[5]			

Hypothesis tests - H630/02 OCR B (MEI)

12 12 12 14 12 14 12 14 12 14 13 14 14 14 15 14 15 14 16 14 17 15 10 14 10			1:Binomial CD 2:Poisson PD 3:Poisson CD	
Binomial CD X 118 N :18 p :0.92			P= 0.011587838	
Let $p =$ probability that a train arrives on time	B1	2.5	For definition of p	
$H_0: p = 0.92$	B1	1.1	For H ₀ and H ₁	
$H_1: p < 0.92$				
Let $X \sim B(18, 0.92)$				
$P(X \le 13) = 0.0116 [> 1\%]$	мі	1.1	For probability $P(X \le any whole number value 1 to 18)$,	Allow FT from H ₁ : <i>p</i> < 0.92 OR H ₁ : <i>p</i> ≠ 0.92
$P(X \le 12) = 0.0021 [< 1\%]$	M1	1.1	Both $P(X \le 13)$ and $P(X \le 12)$	
The critical region is $X \le 12$	A1	2.2a	For correct critical region stated	
	[5]			

Hypothesis tests - H640/02 OCR B (MEI)

The company also manufactures 'Ultrapower' batteries, which are stated to have a mean lifetime of 210 minutes.

(v) A random sample of 8 Ultrapower batteries is selected. The mean lifetime of these batteries is 207.3 minutes. Carry out a hypothesis test at the 5% level to investigate whether the mean lifetime is as high as stated. You should use the following hypotheses $H_0: \mu = 210$, $H_1: \mu < 210$, where μ represents the population mean for Ultrapower batteries. You should assume that the population is Normally distributed with standard deviation 3.4. [5]

Either Test statistic = $\frac{207.3 - 210}{3.4 / \sqrt{8}} = -2.246$	M1	3.4	Must include √8
Lower 5% level 1 tailed critical value of $z = -1.645$ -2.246 < -1.645 so significant	A1 B1	1.1 1.1	For comparison leading to correct conclusion
or Under H ₀ , $\overline{X} \sim N\left(210, \frac{3.4^2}{8}\right)$	M1	3.4	
$P(\overline{X} \le 207.3) = 0.01235$	A1	1.1	BC
0.01235< 0.05 so significant	B1	1.1	
There is sufficient evidence to reject H ₀	A1	2.2b	
There is sufficient evidence to conclude that the mean	E1	2,4	
lifetime is less than 210 minutes.			
	[5]		

Formulae pages

Large Data Set

Teaching and Learning tasks (a non-exhaustive list)

Exploratory data analysis
Modelling
Repeated sampling
Hypothesis testing

Large Data Set

In the exam.....

Questions will be set that give a material advantage to learners who have studied, and are familiar with, the large data set.

They might include questions/tasks which:

- assume familiarity with the terminology and contexts of the data,
- use summary statistics or selected data from, or statistical diagrams based on, the prescribed large data set
- are based on samples related to the contexts in the prescribed large data set,
- require learners to interpret data in ways which would be too demanding in an unfamiliar context.

ocr.org.uk/maths ocr.org.uk/alevelmaths

maths@ocr.org.uk

01223 553998

OCR Maths podcast on iTunes

@OCR_Maths

